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Our Road to MultithreadingOur Road to Multithreading

 Distributed Memory programming challenges
 Expressibility

 Many algorithmic constructs tortuous to implement
 Performance 

 Synchronous codes spend an excessive amount of time waiting
 Asynchronous memory operations boost performance

 Modern out-of-order processors
 MPI_Isend()/MPI_Irecv()

 How do we organize programs with many outstanding requests?
 Threads have a natural latency tolerance for both algorithmic and 

communication latencies
 Write distributed memory code in a multithreaded style!
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LU Factorization with Partial PivotingLU Factorization with Partial Pivoting

 A simple but heavily used computational kernel.
 Available in Linpack/LAPACK/ScaLAPACK.

 LAPACK/ScaLAPACK are the second top mathematical libraries at 
the National Energy Research Scientific Computing Center, a 
national high performance computing facility funded by the Office 
of Science in the U.S. Department of Energy.

 HPL benchmark.
 Highly tuned parallel block LU factorization with partial pivoting.



4

Select pivots
from this 
column

Update this
portion of
the matrix

1 i n

LU Factorization with Partial Pivoting (2)LU Factorization with Partial Pivoting (2)

for i=1:n-1
swap rows so |a(i,i)| = max{abs(a(:,i))}
for j=i+1:n

l(j,i) = a(j,i)/a(i,i)
for j=i:n

u(i,j)=a(i,j)
for j=i+1:n

for k=i+1:n
a(j,k) = a(j,k)-l(j,i)*u(i,k)



Parallel Tasks in LUParallel Tasks in LU

 Panel Factorizations (parallel recursive formulation used)
 Pivot application and update to U
 Trailing matrix updates

some edges omitted



Distributed Memory Multithreading with UPCDistributed Memory Multithreading with UPC
 Co-operative multi-threading used to mask latency and to mask 

dependence delays (home-grown package)
 Non-blocking (remote get) transfers to mask communication latency
 Remote enqueue used to spawn remote threads.  Threads are placed to 

take advantage of locality
 Matrix blocks distributed in 2-d block-cyclic manner (fixed layout) and 

tuned for block size
 Three levels of threads: 

 UPC threads (data layout, each runs an event scheduling loop)
 Multithreaded BLAS (boost efficiency)
 User level (non-preemptive) threads with explicit yield

 Operations “fire” when dependencies are satisfied (use a per proc. 
scoreboard).  “Lookahead” is therefore dynamic (as in many shared 
mem. codes)



The ThreadsThe Threads
 Co-operative threads

 Remove need to maintain integrity of data structures throughout 
program

 Experimented with GNU Pth, POSIX Threads,
Hand rolled user-level threads for portability
 Uses only function calls and returns (fast context switches)
 “Interesting” use of Duff's Device
 Macros: PTP_SPAWN, PTP_FUNCALL, PTP_YIELD,

              PTP_START, PTP_END
 Suspend, resume, priorities
 Custom script expands, computes jumps, rewrites local (stack) accesses, 

creates functions for arguments, etc.
 Allows for many threads to be created/destroyed per processor



Utilization ComparisonUtilization Comparison

 Synchronous (above)
vs. asynchronous (below) 
schedule

 SGI Altix Itanium 2 
1.4GHz, n=12,800, 
process grid = 2x4, block 
size = 400  

 Grey blocks = matrix 
multiplication

 Black blocks = panel 
factorization



UPC HP Linpack PerformanceUPC HP Linpack Performance

Faster than ScaLAPACK  (less synchronization), comparable to MPI/HPL
Large scaling of UPC code on Itanium/Quadrics (Thunder) 

 2.2 TFlops on 512p  and 4.4 TFlops on 1024p
 91.8% of peak on 1p Itanium 2 1.5GHz, 81.9% on 1p Opteron 2.2GHz

Linpack Performance
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Scheduling: The Major IssueScheduling: The Major Issue
 Critical operation: Panel Factorization

 need to satisfy its dependencies first
 perform trailing matrix updates with low block numbers first

 Use a Priority Queue to schedule these
 panel factorizations started as soon as blocks of next panel are 

ready
 Theoretical and practical problem: Memory utilization

 Not enough memory for all tasks at once.  (Each update needs two 
temporary blocks, one from L, one from U)

 If updates are scheduled too soon, you will run out of memory
 Allocate memory in increasing order of factorization and don't skip 

any!
 Thread blocks until enough memory available

 Cache performance:  Too many dgemms to worry about the cache
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Sparse Matrix FactorizationSparse Matrix Factorization
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Sparse Matrix FactorizationSparse Matrix Factorization

 Same basic algorithms used … 
but

 For efficiency we must take 
care to avoid operating on as 
many zero elements as possible

 Many variants due to symmetry, 
different orderings of basic 
factorization loop (left-looking, 
right-looking, multifrontal)

 High degree of parallelism (due 
to sparsity), but finer-grained 
(due to fewer nonzero elements)
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Sparse Cholesky FactorizationSparse Cholesky Factorization

 Based on left-looking, blocked serial code of Ng and Peyton
 Choice of blocks to enhance performance via level-3 BLAS 

operations
 Block columns receive updates from earlier block columns
 After all updates are received, a block column is factorized

 Complications
 Dependency graph
 Scoreboard no longer simple
 How do we choose the “best” operation to perform?

 Longest path in chain of dependencies?
 Weight this by amount of work?
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Our Multithreaded ImplementationOur Multithreaded Implementation

 Strategy
 Use analysis to figure out dependencies and importance of each 

update
 Threads for block column-block column updates
 Set thread priorities based on importance

Critical operations scheduled based on dependency graph
Memory utilization controlled by performing critical ops first.
Cache:  What's a good schedule for this?
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Preliminary Cholesky PerformancePreliminary Cholesky Performance

 Results obtained in SGI Altix  (1.4GHz Itanium 2)
 Performance in seconds

 But... 1p performance not competitive with original serial 
version!  So back to the drawing board...
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Conclusion and Open QuestionsConclusion and Open Questions

 Portable addition of cooperative threads and remote function 
invocation to UPC

 High performance UPC version of Linpack Benchmark in ~5K 
LOC

 Sparse Cholesky still has issues
 Need more thinking about scheduling

 Remember the scheduler's influence on
 Critical tasks
 Memory
 Cache



ExtrasExtras
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Asynchronous ImplementationsAsynchronous Implementations

 MPI
 Use non-blocking communication primitives

• MPI_ISend()/MPI_IRecv()/MPI_IBcast()
 Poll for incoming messages then perform work

 Multithreaded languages (PThreads, Cilk, …)
 Use threads for each major operation

• Each thread is a computational task that shares the CPU with other 
such tasks

 Thread synchronization primitives manage algorithm dependencies
• Give up the CPU (yield) to another thread when a long-latency network 

call is made
• Suspend and resume other threads that may interfere with current 

work
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Parallel PerformanceParallel Performance
 SGI Altix

 8 procs (2 x 4 grid, n = 25,600)
 ScaLAPACK (synchronous)

25.25 GFlop/s (best block size 64)
 UPC LU (asynchronous)

33.60 GFlop/s (best block size 256)
 33% increase in performance

 16 procs (4 x 4 grid, n = 32,000)
 ScaLAPACK (synchronous)

43.34 GFlop/s (block size 64) 
 UPC LU (asynchronous)

70.26 Gflop/s (block size 200)
 62% increase in performance
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Communication RequirementsCommunication Requirements

 Processors usually arranged in a 2D grid.
 Reductions (finding the maximum in a distributed column) for 

pivot selection.
 A gather operation.

 Row Exchanges for application of pivot sequence.
 Row Broadcasts for

 Trailing matrix updates.
 Updates to U.

 Column Broadcasts for trailing matrix updates.
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Some Open CS IssuesSome Open CS Issues

Future Investigations:
 How do things change with pre-emptive threads?
 Can we get support for remote enqueue and spawning?
 How to exert control over the local schedule in a principled 

way?
 Deadlock avoidance in resource allocation?
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Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Synchronous codes
 Pause other processors during panel factorization
 Wait until trailing matrix update is complete before starting next 

factorization
 Less performance 
 Easier to write
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Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Asynchronous codes
 Exploit overlap - do something useful while waiting for data
 Panel factorization can start as soon as data is ready
 Trailing matrix updates overlapped with factorizations and other 

updates
 Peak performance
 Harder to write
 Networking technology, infrastructure not always there

J.B. White & S.W. Bova.  “Where’s the overlap?” (1999).


